細線化

シェアする

  • このエントリーをはてなブックマークに追加
最近の記事
  • 10/21 【C#】寸法線の描画
  • 10/21 【C#】GraphicsPathの領域取得
  • 10/20 【C#】GraphicsPathの描画
  • 10/18 【C#】GraphicsPath
  • 10/17 【C#】Bitmap画像データの拡大縮小
  • 10/15 【C#】画像の座標系
  • 10/14 【C#】画像の上下左右反転、90,180,270度回転
  • 10/3 【C#】SplitContainerのPanel固定方法
  • 9/7 【Neural Network Console】学習データの出力方法
  • 9/3 Deep Learning向け学習画像撮り込みソフト公開
  • 9/1 【Neural Network Console】新規画像のDataset作成方法
  • 8/28 【Neural Network Console】GUI表示スケールの変更
  • 8/22 【Neural Network Console】CPU/GPU処理の設定切替
  • 8/21 【Neural Network Console】Learning Rate(学習率)の設定
  • 8/20 ソニーの無償AIソフト Neural Network Consoleの入手ダウンロード、インストール
  • 8/20 Deep Learning
  • 8/20
  • 8/19 古いバージョンのVisual Studio Community/Expressの入手ダウンロード
  • 8/19 CUDAの入手、ダウンロード、インストール方法
  • 8/17 【C#.NET】マイクロソフト仕様のアフィン変換
  • 8/5 【C#】ファイルを開くダイアログボックスの表示
  • 8/2 キャノンプリンターのCDトレイはどこ?!
  • 7/6 【参考書籍】画像処理・機械学習プログラミング OpenCV 3対応
  • 6/20 【Python,matplotlib】動くグラフをAnimationGifに保存する方法
  • 6/17 シグモイド関数の微分
  • 6/15 シグモイド関数
  • 6/13 合成関数の微分
  • 6/12 WordPressで数式エディタ風に数式を入力したい
  • 6/11 PythonをVisual Studioでインストールする方法
  • 6/9 【Python】OpenCVをAnacondaでインストール(Windows編)
  • 6/6 【Python】Anacondaで複数バージョンの環境切り替え
  • 6/6 画像センシング展2017に出展します。
  • 6/1 【Office365】Web版Outlookのフォントサイズ変更
  • 6/1 【Anaconda】モジュールのアップデートでエラー発生
  • 6/1 【Anaconda】コマンドリストの表示
  • 5/29 Windows10パソコン購入
  • 5/24 Anacondaのアンインストール
  • 5/24 【Jupyter Notebook】新規プログラムの作成
  • 5/23 【Python】開発環境の構築
  • 5/23 Pythonはじめました
  • 4/6 【Office365】Web版Outlookのスレッド表示を解除する方法
  • 4/5 【Excel】フーリエ解析(FFT)
  • 3/20 Canny edge detection
  • 3/20 【Excel2016】分析ツールの表示
  • 3/5 【Visual Studio】黒い背景色を白に変更する方法
  • 2/8 【Windows10】拡張モニタに表示されたウィンドウを元に戻す
  • 2/7 複素数の計算
  • 1/18 【Excel】棒グラフの横軸の目盛を0始まりにする
  • 1/16 【Excel】フーリエ変換
  • 1/6 【OpenCV】疑似カラー(カラーマップ)

  • 二値化された画像において、線の中心1画素分だけを残すように線を細くする処理を細線化といいます。細線化のアルゴリズムにはHilditch、田村の方法、Zhang Suenなど、いろいろあるのですが、ここでは田村の方法について説明します。
    細線化は黒の線を細くする場合と白の線を細くする場合が考えられますが、以下では白の線を細くするのを前提として説明しますので、黒の線を細くする場合は白と黒を読み替えて下さい。

    細線化処理前 細線化処理後
    細線化処理前 細線化処理後

    ざっくり言うと、収縮処理をすると線幅が細くなりますが、線の長さが短くなったり、細い線は消えてしまったりするので、線の端点や交点、線幅が1となった画素などを除去しないように条件を付けながら収縮処理を行います。

    処理をフローチャートを以下に示します。

    細線化フローチャート

    画像全体にラスタスキャンを行い、注目画素の3×3画素の並びがパターン1に該当する場合は中心の画素を除去(白から黒に変える)します。ただし、除去しないパターンに該当する場合は除去を行いません。

    パターン1に該当する画素が1画素も無ければその時点で終了です。

    次にパターン1の時と同様に3×3画素の並びがパターン2に該当する場合は中心の画素を除去(白から黒に変える)します。ただし、除去しないパターンに該当する場合は除去を行いません。

    パターン2に該当する画素が1画素も無ければその時点で終了です。そうでない場合はパターン1の処理に戻り、除去する画素がなくなるまでパターン1、パターン2の除去処理を繰り返します。

    細線化パターン1

    細線化パターン2

    画像処理アルゴリズムへ戻る