ベクトルの基礎

シェアする

  • このエントリーをはてなブックマークに追加
最近の記事
  • 7/6 【参考書籍】画像処理・機械学習プログラミング OpenCV 3対応
  • 6/20 【Python,matplotlib】動くグラフをAnimationGifに保存する方法
  • 6/17 シグモイド関数の微分
  • 6/15 シグモイド関数
  • 6/13 合成関数の微分
  • 6/12 WordPressで数式エディタ風に数式を入力したい
  • 6/11 PythonをVisual Studioでインストールする方法
  • 6/9 【Python】OpenCVをAnacondaでインストール(Windows編)
  • 6/6 【Python】Anacondaで複数バージョンの環境切り替え
  • 6/6 画像センシング展2017に出展します。
  • 6/1 【Office365】Web版Outlookのフォントサイズ変更
  • 6/1 【Anaconda】モジュールのアップデートでエラー発生
  • 6/1 【Anaconda】コマンドリストの表示
  • 5/29 Windows10パソコン購入
  • 5/24 Anacondaのアンインストール
  • 5/24 【Jupyter Notebook】新規プログラムの作成
  • 5/23 【Python】開発環境の構築
  • 5/23 Pythonはじめました
  • 4/6 【Office365】Web版Outlookのスレッド表示を解除する方法
  • 4/5 【Excel】フーリエ解析(FFT)
  • 3/20 Canny edge detection
  • 3/20 【Excel2016】分析ツールの表示
  • 3/5 【Visual Studio】黒い背景色を白に変更する方法
  • 2/8 【Windows10】拡張モニタに表示されたウィンドウを元に戻す
  • 2/7 複素数の計算
  • 1/18 【Excel】棒グラフの横軸の目盛を0始まりにする
  • 1/16 【Excel】フーリエ変換
  • 1/6 【OpenCV】疑似カラー(カラーマップ)
  • 11/8 【Visual Studio】検索結果のウィンドウ表示
  • 11/3 ニコン 一眼レフカメラ D5500レビュー
  • 10/26 カラーカメラはモノクロカメラを兼ねない
  • 9/6 (Free Soft)Animation GIF Builder
  • 8/30 【C#】タブの無いTabControlっぽいものを作る
  • 8/29 【OpenCvSharp】サンプルプログラムの公開
  • 8/28 【PowerPoint】部分的にカラーにする(セレクトカラー処理)
  • 8/27 【C#】引数の値渡し、参照渡し(ref, out)
  • 8/26 【Word/Excel】図形内に文字を挿入する
  • 8/25 【C#】NumericUpDownコントロール
  • 8/24 ニコン D3400 VS D5500 仕様比較
  • 8/22 【C#】MDIフォームにリサイズ可能なPanelを設置する
  • 8/20 【Visual Studio 2015】文字の色が変、かすむ
  • 8/20 【Visual Studio】行のコピー、切り取り、貼り付け
  • 8/20
  • 8/16
  • 7/7 標準偏差のよくある誤解
  • 6/17 ホーム
  • 6/15
  • 6/15
  • 6/15
  • 6/15

  • ベクトルは向き大きさをもった量を表します。

    ベクトルの基礎

    向きが逆の場合、ベクトルは負となります。

    ベクトルを座標で表すと以下のようになります。

    ベクトルの基礎

    ベクトルの大きさは三平方の定理より、以下のようになり、この大きさをノルムと言います。

    ベクトルの基礎

    三次元の場合も同様に点P(X,Y,Z)から点P(X,Y,Z)へ向かうベクトルの場合は

    ベクトルの基礎

    となり、ノルムも

    ベクトルの基礎

    となります。

    ここまでは、ベクトルを矢印で表す事のできるベクトルで幾何ベクトルと言います。

    画像処理においては、より一般的にn個の数の組み合わせからなるn次元ベクトルとして扱う場合があります。

    表記方法は一般に文字を太字にして

    ベクトルの基礎

    のように書きます。

    こうなると、矢印で表す事ができなく、数ベクトルと言います。

    画像処理的には、例えば、輝度値の平均、最小値、最大値、分散を使った

      a=(平均、最小値、最大値、分散)

    のような4次ベクトル!みたいな扱いをしたりします。(かなりいいかげんな例ですが。)

    最初はなんでこんな難しそうに聞こえる(頭が良さそうに聞こえる)表現をするんだろうな~と思っていましたが、ベクトルとして扱う事で、内積などのベクトルの演算が使えたり、行列としても扱えたりするので、それなりのメリットも出てきます。

    使える数学へ戻る