シグモイド関数

ニューラルネットワークに出てくる、活性化関数の一つであるシグモイド関数

$$h(x)=\frac { 1 }{ 1+{ e }^{ -x } }$$

 

この関数の特徴は x = 0, y = 0.5 の点を通り、yの値は0~1の範囲に制限され、xが小さくなるとyは0に漸近し、xが大きくなると1に漸近します。

 

これをPythonのmatplotlibを使ってグラフを書いてみると、こんな感じ

import matplotlib.pyplot as plt
import numpy as np

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

x = np.linspace(-10, 10)
y = sigmoid(x)

plt.plot(x, y)
plt.show() 

 

シグモイド関数を初めて見たのは画像処理でエッジ検出に使う例だったのですが、

「シグモイド関数 エッジ」

と検索したら、トップに出てくるページの記事は、知っている人のだった。

https://www.fast-corp.co.jp/upload/thesis/0013/2.pdf

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください