【Python】画像データ(NumPy,Pillow(PIL))の相互変換

Pythonで画像処理をしていると、画像データの扱いは各ライブラリによって、NumPyのndarrayかPillowのPIL.Imageのどちらかになる場合が多いかと思います。

そこで NumPyとPillowの画像データの相互変換をまとめておきます。

 

NumPy -> Pillowへの変換

NumPy からPillowへの変換は Pillowの fromarray関数を用います。

from PIL import Image

pil_image = Image.fromarray(numpy_image)

Pillow -> NumPyへの変換

PillowからNumPyへの変換は NumPyの array関数を用います。

import numpy as np

numpy_image = np.array(pil_image)

array関数と似たものにasarray関数がありますが、このasarrayで変換されたNumPyの配列(ndarray)は読み取り専用となり、値の参照はできますが、値を設定することはできません。

import numpy as np

numpy_image = np.asarray(pil_image) # numpy_imageは読み取り専用となる

変換サンプル

NumPyとPillowの画像データを相互変換したサンプルを示します。

import numpy as np
from PIL import Image

# Pillow でモノクロ画像を読み込む
pil_image_mono = Image.open("image_mono.bmp")
print(type(pil_image_mono))     # <class 'PIL.BmpImagePlugin.BmpImageFile'>
print(pil_image_mono.mode)      # L
print(pil_image_mono.size)      # (400, 300)

# Pillow でカラー画像を読み込む
pil_image_color = Image.open("image_color.bmp")
print(type(pil_image_color))    # <class 'PIL.BmpImagePlugin.BmpImageFile'>
print(pil_image_color.mode)     # RGB
print(pil_image_color.size)     # (400, 300)

# Pillow -> NumPyへ変換(モノクロ画像)
ndarray_mono = np.array(pil_image_mono)
print(type(ndarray_mono))       # <class 'numpy.ndarray'>
print(ndarray_mono.dtype)       # uint8
print(ndarray_mono.shape)       # (300, 400)

# Pillow -> NumPyへ変換(カラー画像)
ndarray_color = np.array(pil_image_color)
print(type(ndarray_color))      # <class 'numpy.ndarray'>
print(ndarray_color.dtype)      # uint8
print(ndarray_color.shape)      # (300, 400, 3)

# NumPy -> Pillowへ変換(モノクロ画像)
pil_image_mono = Image.fromarray(ndarray_mono)
print(type(pil_image_mono))     # <class 'PIL.Image.Image'>
print(pil_image_mono.mode)      # L
print(pil_image_mono.size)      # (400, 300)

# NumPy -> Pillowへ変換(カラー画像)
pil_image_color = Image.fromarray(ndarray_color)
print(type(pil_image_color))    # <class 'PIL.Image.Image'>
print(pil_image_color.mode)     # RGB
print(pil_image_color.size)     # (400, 300)

 

ここで注意しておきたいのが、

Pillowのモノクロ画像をNumPyへ変換したときは
[画像の高さ, 画像の幅]
の順の二次元配列となります。

Pillowのカラー画像をNumPyへ変換したときは
[画像の高さ, 画像の幅, 色(R, B, Gの順)]
の順の三次元配列となります。

NumPyのカラー画像をPillowへ変換する場合は、カラーデータの並びが R,G,B である必要があります。
OpenCVの画像データもNumPyのndarrayで扱われますが、OpenCVの場合、カラーデータの並びが
B,G,Rとなるため、OpenCVからPillowの画像データへ変換する場合は、cvtColor関数を使って、R,G,Bに変換しておく必要があります。

コード例

image_color = cv2.cvtColor(image_color, cv2.COLOR_BGR2RGB)

(参考)

matplotlibで画像データ(OpenCV,pillow,list)を表示する

【Python/NumPy】カラー画像データをRGBからBGRへ変換

【Python】画像データがNumPyかPillowか調べる方法

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください