二値化

シェアする

  • このエントリーをはてなブックマークに追加
最近の記事
  • 7/6 【参考書籍】画像処理・機械学習プログラミング OpenCV 3対応
  • 6/20 【Python,matplotlib】動くグラフをAnimationGifに保存する方法
  • 6/17 シグモイド関数の微分
  • 6/15 シグモイド関数
  • 6/13 合成関数の微分
  • 6/12 WordPressで数式エディタ風に数式を入力したい
  • 6/11 PythonをVisual Studioでインストールする方法
  • 6/9 【Python】OpenCVをAnacondaでインストール(Windows編)
  • 6/6 【Python】Anacondaで複数バージョンの環境切り替え
  • 6/6 画像センシング展2017に出展します。
  • 6/1 【Office365】Web版Outlookのフォントサイズ変更
  • 6/1 【Anaconda】モジュールのアップデートでエラー発生
  • 6/1 【Anaconda】コマンドリストの表示
  • 5/29 Windows10パソコン購入
  • 5/24 Anacondaのアンインストール
  • 5/24 【Jupyter Notebook】新規プログラムの作成
  • 5/23 【Python】開発環境の構築
  • 5/23 Pythonはじめました
  • 4/6 【Office365】Web版Outlookのスレッド表示を解除する方法
  • 4/5 【Excel】フーリエ解析(FFT)
  • 3/20 Canny edge detection
  • 3/20 【Excel2016】分析ツールの表示
  • 3/5 【Visual Studio】黒い背景色を白に変更する方法
  • 2/8 【Windows10】拡張モニタに表示されたウィンドウを元に戻す
  • 2/7 複素数の計算
  • 1/18 【Excel】棒グラフの横軸の目盛を0始まりにする
  • 1/16 【Excel】フーリエ変換
  • 1/6 【OpenCV】疑似カラー(カラーマップ)
  • 11/8 【Visual Studio】検索結果のウィンドウ表示
  • 11/3 ニコン 一眼レフカメラ D5500レビュー
  • 10/26 カラーカメラはモノクロカメラを兼ねない
  • 9/6 (Free Soft)Animation GIF Builder
  • 8/30 【C#】タブの無いTabControlっぽいものを作る
  • 8/29 【OpenCvSharp】サンプルプログラムの公開
  • 8/28 【PowerPoint】部分的にカラーにする(セレクトカラー処理)
  • 8/27 【C#】引数の値渡し、参照渡し(ref, out)
  • 8/26 【Word/Excel】図形内に文字を挿入する
  • 8/25 【C#】NumericUpDownコントロール
  • 8/24 ニコン D3400 VS D5500 仕様比較
  • 8/22 【C#】MDIフォームにリサイズ可能なPanelを設置する
  • 8/20 【Visual Studio 2015】文字の色が変、かすむ
  • 8/20 【Visual Studio】行のコピー、切り取り、貼り付け
  • 8/20
  • 8/16
  • 7/7 標準偏差のよくある誤解
  • 6/17 ホーム
  • 6/15
  • 6/15
  • 6/15
  • 6/15

  • 二値化【Binarization】では画像の輝度値が指定した値(しきい値【Threshold】)以上の場合は、値未満の場合はにする処理を行います。

    二値化処理前 二値化処理後
    二値化処理前 二値化処理後

    二値化処理では上図のように、しきい値付近に輝度値の変動がある場合、二値化処理を行うと点々とした画素が残ってしまうため、この場合は二値化処理を行う前に平滑化フィルタメディアンフィルタなどのノイズ除去を行ってから二値化処理を行う場合が多くあります。 また、二値化処理を行うと画像の輝度値は白と黒しかないため、の輝度値をの輝度値をとし、1画素を1ビットであらわす事ができ、画像データサイズを小さくすることができるのですが、1画素を1ビットであらわすと各画素の輝度値の参照がかえって面倒になってしまうので、画像処理のプログラムではの輝度値を255の輝度値をとして、1画素8ビット(1バイト)で扱う場合の方が一般的です。 (フォトレタッチ系のソフトでは1画素1ビットで扱う場合の方が多いと思います。)

    【二値化処理の応用例】

    • 欠陥検出
    • 領域分割、抽出
    • 処理領域のマスク(領域指定)

    など  

    【二値化プログラム例】
    ●効率の悪いプログラム例

    for (j = 0; j < Height ; j++){
        for ( i = 0; i < Width; i++){
            //入力画像の輝度値の取得
            Bright = pSrc[i + j * Width];
            //二値化処理
            if (Bright >= Threshold)
                pDst[i + j * Width] = 255;
            else
                pDst[i + j * Width] =0;
        }
    }
    

    このプログラムでは画像の全画素をif文で処理しているので、非常に非効率です。 この部分はルックアップテーブルを用いて最適化します。 また、この例では二重ループを用いて画像の輝度値を二次元的に参照していますが、二値化処理では近傍画素を用いて処理を行わないので、画像データをただの一次元的な配列として捉えても構いません。 ということで、最適化したのが以下の例です。

    ●効率の良いプログラム例

    unsigned char LUT[256] = {0};
    //二値化ルックアップテーブルの作成
    for ( i = Threshold; i < 256; i++)
        LUT[i] = 255;
    //二値化処理
    for ( i = 0; i < Width * Height; i++)
        pDst[i] =  LUT[ pSrc[i] ];
    

    画像処理アルゴリズムへ戻る

    コメント

    1. […] 他にも二値化処理や、輝度値を0~255の範囲内に収めるための if 文の代わりなどにも応用できる場合があるので、処理を高速にしたい場合は、このルックアップテーブルが使えるか […]

    2. […] 二値化、Pタイル法、判別分析法(大津の二値化) […]

    3. […] Pタイル法【Percentile Method】は、画像の二値化したい領域が全画像の領域に占める割合をパーセント(%)で指定し二値化する手法です。 […]