画像の回転

シェアする

  • このエントリーをはてなブックマークに追加
最近の記事
  • 10/21 【C#】寸法線の描画
  • 10/21 【C#】GraphicsPathの領域取得
  • 10/20 【C#】GraphicsPathの描画
  • 10/18 【C#】GraphicsPath
  • 10/17 【C#】Bitmap画像データの拡大縮小
  • 10/15 【C#】画像の座標系
  • 10/14 【C#】画像の上下左右反転、90,180,270度回転
  • 10/3 【C#】SplitContainerのPanel固定方法
  • 9/7 【Neural Network Console】学習データの出力方法
  • 9/3 Deep Learning向け学習画像撮り込みソフト公開
  • 9/1 【Neural Network Console】新規画像のDataset作成方法
  • 8/28 【Neural Network Console】GUI表示スケールの変更
  • 8/22 【Neural Network Console】CPU/GPU処理の設定切替
  • 8/21 【Neural Network Console】Learning Rate(学習率)の設定
  • 8/20 ソニーの無償AIソフト Neural Network Consoleの入手ダウンロード、インストール
  • 8/20 Deep Learning
  • 8/20
  • 8/19 古いバージョンのVisual Studio Community/Expressの入手ダウンロード
  • 8/19 CUDAの入手、ダウンロード、インストール方法
  • 8/17 【C#.NET】マイクロソフト仕様のアフィン変換
  • 8/5 【C#】ファイルを開くダイアログボックスの表示
  • 8/2 キャノンプリンターのCDトレイはどこ?!
  • 7/6 【参考書籍】画像処理・機械学習プログラミング OpenCV 3対応
  • 6/20 【Python,matplotlib】動くグラフをAnimationGifに保存する方法
  • 6/17 シグモイド関数の微分
  • 6/15 シグモイド関数
  • 6/13 合成関数の微分
  • 6/12 WordPressで数式エディタ風に数式を入力したい
  • 6/11 PythonをVisual Studioでインストールする方法
  • 6/9 【Python】OpenCVをAnacondaでインストール(Windows編)
  • 6/6 【Python】Anacondaで複数バージョンの環境切り替え
  • 6/6 画像センシング展2017に出展します。
  • 6/1 【Office365】Web版Outlookのフォントサイズ変更
  • 6/1 【Anaconda】モジュールのアップデートでエラー発生
  • 6/1 【Anaconda】コマンドリストの表示
  • 5/29 Windows10パソコン購入
  • 5/24 Anacondaのアンインストール
  • 5/24 【Jupyter Notebook】新規プログラムの作成
  • 5/23 【Python】開発環境の構築
  • 5/23 Pythonはじめました
  • 4/6 【Office365】Web版Outlookのスレッド表示を解除する方法
  • 4/5 【Excel】フーリエ解析(FFT)
  • 3/20 Canny edge detection
  • 3/20 【Excel2016】分析ツールの表示
  • 3/5 【Visual Studio】黒い背景色を白に変更する方法
  • 2/8 【Windows10】拡張モニタに表示されたウィンドウを元に戻す
  • 2/7 複素数の計算
  • 1/18 【Excel】棒グラフの横軸の目盛を0始まりにする
  • 1/16 【Excel】フーリエ変換
  • 1/6 【OpenCV】疑似カラー(カラーマップ)

  • 画像を回転する場合、任意点周りの回転移動でも紹介したように回転行列を使って、例えば、画像の中心周りに画像を回転させると、下図のように回転後の画像が虫食い状態になってしまいます。

    画像の回転 画像の回転
    回転前の画像 回転後の画像

    こうならないようにするためには、回転前の画像の座標を回転行列を使って回転後の座標を計算するのではなく、回転後の座標が回転前の画像のどの座標を参照しているのかを計算し、画像を変換します。

    【回転前の画像を回転行列を使って変換】

    画像の回転

    【回転後の座標が回転前のどの座標を参照しているかを計算して変換】

    画像の回転

    実際の変換処理は以下のように行います。

    回転前の画像の座標を(x,y)、回転後の画像の座標を(X,Y)、画像の中心座標を(Cx,Cy)とすると単純に画像の中心周りに座標を回転すると以下のような行列で表されます。

    画像の回転

    この行列を回転前の画像の座標(x、y)に関して解けばいいので、行列の式の両辺にそれぞれ逆行列をかければいいので、以下のような手順で行列を解いていきます。

    画像の回転

    これで、回転前の座標(x、y)に関して解くことができます。
    でも、逆行列を解くのは面倒と思う事なかれ。
    (+Cx,+Cy)の平行移動の逆行列は(-Cx、-Cy)方向への移動と同じ、+θ方向への回転の逆行列は-θ方向への回転と同じなので、

    画像の回転

    とすれば、逆行列を解くことなく回転後の座標(x、y)に関して座標を解くことができます。
    このようにして画像の回転処理を行うと、このようになります。

    画像の回転 画像の回転
    回転前の画像 回転後の画像

    でも、回転後の画像はなんかギザギザしてしまっていますが、これは回転前の画像の座標を計算するとほとんどの場合、画素の画素の間の座標となってしまいますが、上図の例ではこの座標を四捨五入して輝度値を参照しているためで、bilinearやbicubicなどの補間を使うと少しは滑らかな画像となります。

    今回は画像の回転について紹介していますが、画像の拡大縮小についても同様の考え方で処理することができます。

    画像処理アルゴリズムへ戻る