フラットフィールドコレクション(FFC)

フラットフィールドコレクションとは?

フラットフィールドコレクション(Flat Field Correction【略: FFC】)とは、撮影した画像の輝度値を均一にする補正で、比較的高価な工業用のカメラに搭載され、主にラインセンサカメラには、このフラットフィールドコレクションの機能が搭載されています。

 

そもそも、真っ白な被写体を撮影した時に、なぜ撮影した画像の輝度値が均一にならないのか?と言うと、考えられる要因として

 

  • レンズのシェーディングによる影響
  • 照明の明るさのムラ
  • CCD素子1つ1つの感度のばらつき

 

などが挙げられます。

 

フラットフィールドコレクションを行うと、これらの要因をまとめて補正する事が可能となります。

 

   
フラットフィールドコレクション前 フラットフィールドコレクション後

 

このフラットフィールドコレクションは、カメラのアナログオフセット(足し算/引き算)、アナログゲイン(掛け算/割り算)、デジタルオフセット(足し算/引き算)、デジタルゲイン(掛け算/割り算)を駆使して輝度値が均一になるように補正されます。
多少、実際の補正手順が面倒なので敬遠されがちですが、補正アルゴリズムを理解すると、ある程度、納得できると思います。

 

補正アルゴリズム

カメラにより実際の処理は異なる部分があると思いますが、おおむね以下の流れでフラットフィールドコレクションは行われます。

 

まず、最初にフラットフィールドコレクションによる輝度値の補正により、輝度値が飽和しない(輝度値が255を超えない)ようにするため、画像の最大輝度値が、おおむね255の80%程度(204ぐらい)になるように、実際の撮影する環境(照明、露光時間など)においてアナログゲインを調整します。

 

 

上図を見ても分かるように、画素のよっては入力光量が小さい場合(暗い場合)、出力輝度値が0になってしまう画素がある可能性があります。

 

これを補正するため、入力光量を0にして(レンズにキャプをする)、アナログオフセットで画像の最小輝度値が0にならないように調整します。

 

 

この状態で、カメラの黒レベル補正(FPN)の機能を実行すると、カメラ内部では、黒レベル(輝度値0)において、各画素の輝度値が0になるようデジタルオフセットの値が調整されます。

 

 

次に実際の撮影状態(照明、露光時間など)にして、できるだけ反射や汚れ、ムラの少ない白の被写体を撮影し、カメラの白レベル補正(PRNU)の機能を実行します。

 

すると、上記の撮影状態で全画素が指定した目標輝度値(輝度値を指定できないカメラもある)になるように、カメラ内部では全画素のデジタルゲインの値が調整されます。

 

 

この一連の処理を行う事で、最初に紹介したように、画像全体が均一な輝度値となる画像を得る事が可能となります。

 

また、上記の説明は、以下の順序でゲイン/オフセットの補正が行われる事を前提に説明しています。

 

CCDの電気信号アナログオフセットアナログオゲインデジタルオフセットデジタルゲイン

 

この機能は、主に二値化処理を用いた処理による画像検査などにおいては、効果を発揮します。

エリアセンサとラインセンサとの比較

センサの比較

エリアセンサ ラインセンサ
センサ形状
CCD素子が縦横方向に並び、二次元的に
画像の撮影ができる。
CCD素子が横一列に並び、一次元的
な画像の撮影しかできない。
画素数 画素数 30万画素(640×480画素)
~500万画素程度(2456×2058画素)がメイン
最大2000万画素(5344×4008画素)
1024画素 ~7450画素程度がメイン
最大16384画素

 

ラインセンサはあまりなじみが無いかもしれませんが、身近なラインセンサにはコピー機などがあります。
コピー機は2組の鏡を絶妙に動かしながら、光学的な撮影距離を変えずにスキャン(移動撮影)しているので、興味があれば動作を覗いて見ると良いでしょう。

 

ラインセンサは何と言っても高解像度の画像を撮影できるので、魅力があるのですが、ワークを移動しながら撮影しないといけないため、エリアセンサに比べどうしても撮影システムが複雑になってしまいます。

 

また、エリアセンサのフレームレートは30~100fps程度、ラインセンサは3kHz程度、露光時間にするとエリアセンサは10~30mSec、ラインセンサは300μSec程度。

 

もちろん例外はあるのですが、ここで大事なのは露光時間(フレームレート、スキャンレート)は実に100倍!近く異なるということ。
その分だけラインセンサでは明るくちらつきの無い照明が必要となります。

 

このように↓

ラインセンサで撮影した画像がしましまになってしまう場合は、蛍光灯のチラつきの影響の場合が多いです。

 

センサの種類にはCCDCMOSタイプがありますが、高解像度で高速フレームレートのエリアセンサとなるとCMOSタイプのカメラが多くなってきています。が、CMOSタイプでは欠陥画素(明らかに感度の悪い画素)があるのがつきものです。
カメラによってはカメラの内部でこの欠陥画素を補正してしまうものもあるので分かりづらい場合もありますが、、欠陥検査などにCMOSのカメラを使おうとすると、どうしてもこの欠陥画素が邪魔をするので、ご注意下さい。というよりは使わない方が良いと思います。

 

【欠陥画素の例】

周りより白い部分や黒い部分が欠陥画素(画像を拡大表示しています)

 

 

また、CMOSにはグローバルシャッタローリングシャッタというのがあり、グローバルシャッタは全画素を同時に露光するのに対し、ローリングシャッタでは横1ラインごとに順次露光していくので、動いている被写体を撮影すると被写体が歪んでしまいます。安いCMOSカメラでは、このローリングシャッタのカメラが多いのでご注意下さい。

 

エリアセンサ向きな撮影方法

エリアセンサは撮影システムが簡単に組めるので、まずはオススメなのですが、ラインセンサでは撮影が困難なものには、製造ラインから流れてくるワークの撮影などがあります。

 

 

ラインセンサ向きな撮影方法

ラインセンサは1度に1ライン分しか撮影できないのですが、それを逆手に取ると、円筒物の撮影には向いています。
ラインセンサの場合(下図、右側)、円筒の影の影響を受ける事なく撮影する事が出来ます。

 

 

また、ワークの送り方向には画素数をいくらでも取れるので、フィルムやシート、ガラス、鉄板などの長尺物の撮影には最適です。

 

 

ガラスやフィルムの検査などにおいては、1台のカメラだけでは解像度が不足する場合があるので、ラインセンサを横1列に並べて撮影する場合もあります。

 

 

まとめ

エリアセンサやラインセンサ、CCDやCMOSにはそれぞれ特徴があるので、撮影の要求に合わせてお選び下さい。
また、デジカメの世界では画素数が多い程、良いカメラのようになっていますが、画素数が多いほどフレームレートやスキャンレートが遅くなったり、画素数が多いと画素サイズも小さくなりがちで、一般に感度も悪くなるので、ご注意下さい。
ようは、適材適所なのです。

 

関連記事

光学部品/カメラバイヤーズガイド

 


【展示会情報】画像センシング展/SSII2011

2011年6月8日(水)~10日(金)、パシフィコ横浜にて

 

画像センシング展2011

 

が開催されます。

 

国内外のカメラ、照明、画像入力ボード、画像処理ソフトメーカが一堂に会するので、画像処理を使った検査を検討している方は是非とも参加されてみては如何でしょうか?

 

また、同時開催で

 

SSII2011

 

という、非常に参考になるセミナー(有料)があるので、興味がある方参加すると良いと思います。

詳しいセミナーのプログラム内容はこちら

私も参加申し込みをしました。

 

また、ちょっと宣伝が入ると思いますが、展示会の出展社による無料の

 

イメージングセミナー

 

も開催されます。

 

内容は最新の物、かつ、実際に検査などで使われている技術ばかりなので、現実的で、こちらも役にたつと思います。

 

また、コンピュータビジョン最先端ガイドなど、ちょっとマニアックな本も会場で販売されていると思います。この本を手に取って見る事のできる数少ないチャンスなので、こちらも見てみて下さい。