カラーカメラはモノクロカメラを兼ねない

「カラーカメラはモノクロカメラを兼ねない」と言って、モノクロ画像が欲しいなら、カラーカメラで画像を撮影して、モノクロ画像に変換すればいいのでは?!

と私が工業用のカメラを扱う業界に属するようになる前はそう思っていました。

 

実際、カラーカメラもモノクロカメラも画素数が同じであるのなら値段も、ほとんど変わりません。

なら、やっぱりカラーの方がお買い得!!

と思ったりもします。

 

監視カメラのように画像を漠然と撮影する用途であれば、確かに、カラーカメラを買っておけばそれで、十分という場面もあるかと思いますが、マシンビジョンの世界では、0.1mmのキズを検査するのに3画素分で撮影して、欠陥を見つける!というように、1画素あたりの撮影分解能が重要な場合が多くあります。

このような場合、色情報が特に必要でない限り、モノクロカメラを用いた方が圧倒的に有利となります。

 

なぜか?

 

それを考える前に液晶TVなどでは、どのようにしてカラー画像を作り出しているのか?というと下の用な画像において

 

四角の部分を拡大したのがこちら↓

 

 

撮影の都合で画像が歪んでしまっておりますが、それは気にしないでもらって、上図のように縦長のR,G,Bの画素が3つずつ並んでおり、光の三原色である赤、緑、青の3色の色のバランスを調整することで、液晶モニタ全体としては、カラーの画像として見ることができのは比較的知られているのではないでしょうか?

 

この、液晶モニタにおいて、もし、モノクロの液晶モニタがあったとしたら、R,G,Bの画素の部分1つ1つがモノクロの画素となるので、横方向に3倍、解像度を上げることができそうだという事は理解して頂けると思います。

 

それでは、カメラ(センサ)のしくみはどのようになっているのか?というと、

カラーエリアCCDセンサのしくみ(単板式、三板式)

 

上記ページでも紹介しておりますが、モノクロのセンサ

 

 

の1画素1画素にR,G,BのBayerパターンと呼ばれる配置↓

 

 

で、光学的フィルタが取付られたものが、カラーセンサとなります。

こんなイメージ↓

 

 

もともと構造的にはモノクロのセンサと同じセンサの上にR,G,Bのフィルタを付けただけなので、RとBの画素数は全体の1/4、Gの画素数は1/2の画素数しかありません。

 

このセンサを使ってカラー画像にするのには、例えば赤の画素の位置では、上下左右に緑の画素があるので、その画素から緑の輝度値を補間し、同様に斜め方向に青の画素があるので、青の輝度値を補間して、不足している輝度値を算出し、それぞれの画素において、R,G,Bの輝度値として、カラー画像を生成します。

 

このようにして、結果として、カラーカメラではモノクロカメラと同じ画素数分だけR,G,Bのデータを取得しているのですが、あくまでも補間してR,G,Bの輝度値を得ている場所が多いという事に注意して下さい。

 

実際に、このようなセンサで撮影した生のデータ(RAWデータ)は、下図のようになります。

 

 

カラーセンサであっても、センサの構造的にはモノクロセンサと変わらないので、センサから出てくる生のデータは市松模様をしたモノクロデータとなります。

 

これを単純な補間方法でカラー画像に変換すると、

 

 

このように、エッジ部分がギザギザしたカラー画像となってしまいます。

 

こうならないようにカメラメーカ各社は、様々なノウハウで綺麗なカラー画像へと変換しています。

例えばデジカメでいうところの画像処理エンジンと呼ばれる、ニコンでいうとEXPEED、キヤノンのDIGICがこのカラー画像への変換処理を担っています。

 

割と単純なフィルタ処理をするだけでも、このように↓なるのですが、こうなると、もともとの生データがギザギザしていたことを忘れてしまいますね。

 

このようにカラーカメラは、ほとんどの画素が補間により作り出された画素であることから、数画素レベルの解像度が重要となる場合の多いマシンビジョンにおいては、「カラーカメラはモノクロカメラを兼ねない」となります。

 

数画素レベルの解像度が重要でしかもカラーが必要な場合には、R,G,Bそれぞれのセンサを用いた3CCDカメラや、モノクロカメラのレンズの前に、R,G,Bのフィルタを配置して、フィルタを切り替えながら3回R,G,Bの画像を撮影し合成することでカラー画像を生成したり、照明をR,G,B、3回に分けて撮影することで、カラー画像を生成する場合もあります。

これらのことから、工業用のカメラでは、なんで今どきモノクロカメラを使う場合が多いんだろう?

と昔は思っていたのですが、あえてモノクロカメラを使った方が解像度的には有利になるという点が重要です。

 

マシンビジョンへ戻る

カラーエリアCCDセンサのしくみ(単板式、三板式)

カラーのエリアセンサのカメラでは3CCD方式(三板式)単板式というのがあります。
工業用のカラーのCCDカメラでは、単板式のカメラの方が多く採用されています。
他にも富士フィルムが採用したハニカム方式やシグマのカメラで採用されている三層方式などがあります。

 

3CCDセンサ(三板式)

ホームビデオカメラでもおなじみの3CCD方式。
ダイクロイックプリズムでR,G,Bに分光して、各色用のエリアセンサで撮影します。

 

 

CCDを3つ使うので、カメラ本体が大きくなりやすく、価格も高価になってしまいますが、色の再現性の面では単板式に比べて有利となります。

 

単板式

通常のモノクロエリアCCDの各画素の上にR,G,Bそれぞれの色のみを通す光学フィルタを下図のような配置で装着し、画像を撮影後、各画素ともR,G,Bの輝度値を演算処理しカラーの画像に変換します。

 

 

 

この並びをベイヤ(Bayer)配列と言います。

 

カラー画像への変換は下図のように各R,G,Bの撮影出来ていない画素については周辺の画素の輝度値を用いで補間し、カラーへと変換します。

 

ほとんどの工業用のCCDカメラではカメラ内部でカラーに変換されますが、画素数の大きなカメラや高速のカメラでは、カラーに変換することで、データ容量が1画素8ビットから24ビットに容量が3倍となってしまうため、下図のようにモノクロのまま出力される場合もあるので、ご注意下さい。

 

 

高価なデジタルカメラなどでは、カラーの変換をカメラ任せにはしないでソフトで処理る場合もあり、変換する前の画像データをRAWデータ、変換する処理のことをRAW現像と呼びます。(たぶん、デジカメ用語)
RAW現像は他にもベイヤ演算デモザイキングなどと呼びます。

 

もっとも基本的な補間方法としては、たとえば赤の画素では上下左右の輝度値を平均し緑の輝度値を求め、斜め方向の輝度値を平均して青の輝度値を求めます。
同じ用に緑や青の画素についても処理を行うと、カラーの画像へと変換することができます。

 

比較的有名な変換方法には適応型カラープレーン補間法ACPI:Advanced Color Plane Interpolation)というのがあるので、上記キーワードで検索してみて下さい。

 

しかし実際にベイヤ演算を行ってみると、擬色と呼ばれる本来の色とは異なる色が出たり、通称ラーメンノイズと呼ばれる渦巻き状のパターンが発生したりと、なかなかうまくいきません。

 

これらのノイズを如何に防ぐかが各カメラメーカーやRAW現像ソフトメーカの腕の見せ所で、各社のノウハウとなっているため、私は実際にどうのような処理を行っているのか?よく分かっていません...

 

RAW現像については、現像ソフトで比較的有名な市川ラボラトリーのSILKPIXというソフトがあるので、下記ページを見て頂くと参考になると思います。

http://www.isl.co.jp/SILKYPIX/japanese/special/movie/

 

このように単板のカラーカメラはR,G,Bの足りない画素を補間してカラー画像を撮影しているので、画像の輪郭などが重要な場合、モノクロカメラの方が性能は良くなります。

 

以前は、カラー画像を使えば、モノクロにも変換できるし、カラーカメラはモノクロカメラを兼ねる!と思っていたのですが、モノクロカメラの方が有利な場合もあるので、特に色情報を必要としない場合はモノクロカメラを使う方がオススメです。(データ容量も少なくてすみますし...)

 

このへんの話は、少し古いですが、トランジスタ技術の2009年7月号に書いてあるので、ご興味のある方は、参照してみて下さい。