逆行列(Gauss-Jordan法)

シェアする

  • このエントリーをはてなブックマークに追加
最近の記事
  • 7/6 【参考書籍】画像処理・機械学習プログラミング OpenCV 3対応
  • 6/20 【Python,matplotlib】動くグラフをAnimationGifに保存する方法
  • 6/17 シグモイド関数の微分
  • 6/15 シグモイド関数
  • 6/13 合成関数の微分
  • 6/12 WordPressで数式エディタ風に数式を入力したい
  • 6/11 PythonをVisual Studioでインストールする方法
  • 6/9 【Python】OpenCVをAnacondaでインストール(Windows編)
  • 6/6 【Python】Anacondaで複数バージョンの環境切り替え
  • 6/6 画像センシング展2017に出展します。
  • 6/1 【Office365】Web版Outlookのフォントサイズ変更
  • 6/1 【Anaconda】モジュールのアップデートでエラー発生
  • 6/1 【Anaconda】コマンドリストの表示
  • 5/29 Windows10パソコン購入
  • 5/24 Anacondaのアンインストール
  • 5/24 【Jupyter Notebook】新規プログラムの作成
  • 5/23 【Python】開発環境の構築
  • 5/23 Pythonはじめました
  • 4/6 【Office365】Web版Outlookのスレッド表示を解除する方法
  • 4/5 【Excel】フーリエ解析(FFT)
  • 3/20 Canny edge detection
  • 3/20 【Excel2016】分析ツールの表示
  • 3/5 【Visual Studio】黒い背景色を白に変更する方法
  • 2/8 【Windows10】拡張モニタに表示されたウィンドウを元に戻す
  • 2/7 複素数の計算
  • 1/18 【Excel】棒グラフの横軸の目盛を0始まりにする
  • 1/16 【Excel】フーリエ変換
  • 1/6 【OpenCV】疑似カラー(カラーマップ)
  • 11/8 【Visual Studio】検索結果のウィンドウ表示
  • 11/3 ニコン 一眼レフカメラ D5500レビュー
  • 10/26 カラーカメラはモノクロカメラを兼ねない
  • 9/6 (Free Soft)Animation GIF Builder
  • 8/30 【C#】タブの無いTabControlっぽいものを作る
  • 8/29 【OpenCvSharp】サンプルプログラムの公開
  • 8/28 【PowerPoint】部分的にカラーにする(セレクトカラー処理)
  • 8/27 【C#】引数の値渡し、参照渡し(ref, out)
  • 8/26 【Word/Excel】図形内に文字を挿入する
  • 8/25 【C#】NumericUpDownコントロール
  • 8/24 ニコン D3400 VS D5500 仕様比較
  • 8/22 【C#】MDIフォームにリサイズ可能なPanelを設置する
  • 8/20 【Visual Studio 2015】文字の色が変、かすむ
  • 8/20 【Visual Studio】行のコピー、切り取り、貼り付け
  • 8/20
  • 8/16
  • 7/7 標準偏差のよくある誤解
  • 6/17 ホーム
  • 6/15
  • 6/15
  • 6/15
  • 6/15

  • 2×2行列の逆行列

    行列

    逆行列

    の逆行列は

    逆行列

    となります。
    ただし、ad-bc = 0 のとき、逆行列は存在しません。

    3×3以上の行列の逆行列

    逆行列を解く手法はいくつかありますが、ここでは比較的分かり易いGauss-Jordan法を紹介します。

    Gauss-Jordan法では行列の右側に単位行列を付けたして、行ごとに掛け算、足し算、引き算を行い、行列の左側が単位行列になるように計算を繰り返し、最後に右側に残った行列が逆行列となります。

    といっても分かりづらいと思うので、具体的な計算例は以下の通りです。

    行列

    gauss-jordan法

    の右側に単位行列を追加します。

    gauss-jordan法

    1行1列目の要素が1となるように1行目2で割ります

    gauss-jordan法

    1列目の要素が(1 0 0)となるように

    [2行目] = [2行目]ー[1行目]
    [3行目] = [3行目]ー[1行目]×4

    を計算します。

    gauss-jordan法

    2行2列目の要素が1となるように2行目2倍します。

    gauss-jordan法

    2列目の要素が(0 1 0)となるように

    [1行目] = [1行目]ー[2行目]×3/2
    [3行目] =
    [3行目]+[2行目]

    を計算します。

    gauss-jordan法

    ここで、3行3列目の要素はすでに1なので、3列目の要素が(0 0 1)となるように

    [1行目] = [1行目]+[3行目]×2
    [2行目] = [2行目]ー[3行目]×2

    を計算します。

    gauss-jordan法

    これで、左側が単位行列となり、右側に出来た行列が求める逆行列となります。

    ただ、このままの方法では、求める行列の対角要素(行数と列数の同じ場所)に0(ゼロ)がある場合は対角要素を1に出来ない(0で割れない)ので、ここにピボット選択という手法を導入します。
    このピボット選択についてはピボット選択を行ったGauss-Jordan法にて紹介しています。

    使える数学へ戻る

    コメント