回転行列、拡大縮小行列、平行移動行列(三次元座標の場合)

三次元座標の場合、まず座標軸の定義、回転方向の定義を明確に覚えます。

三次元座標の定義

この座標は右手座標系と呼ばれます。
フレミングの法則のときのように右手親指人差し指中指をそれぞれ
直交するようにします。
このとき親指から順に親指がX軸人差し指がY軸中指がZ軸の方向と
なります。
回転方向は電流と磁界の向きと同じように電流軸の向き磁界回転方向
に相当します。(右ねじの法則と同じです。)

 

回転行列

三次元の回転行列の前に二次元の回転行列のおさらいです。
二次元の回転行列は以下の通りとなります。

 

二次元座標の回転

 

これをベースに三次元座標の場合では、回転する軸の正の方向から原点の方向を見たときに、X軸、Y軸はそれぞれ何軸に相当するのか?を考えれば、二次元座標のXやYの変数の置き換えで導き出すことができます。
行列変換しない軸に関しては単位行列でそのまま残します。

 

【X軸周りの回転】
X軸周りの回転

【Y軸周りの回転】
Y軸周りの回転

【Z軸周りの回転】
Z軸周りの回転

拡大縮小行列

点(x, y, z)を原点に関してX軸方向に、Y軸方向に、Z軸方向にZする行列は

拡大行列

 

平行移動行列

点(x, y, z)をX軸方向に、Y軸方向に、Z軸方向にZだけ移動する行列は

平行移動

 

補足

三次元の座標変換に関して検索すると座標変換は下記のように

行ベクトル

行ベクトルで表記される場合もあるのですが、変換行列の値が変わるので、
混同しないようご注意下さい。
この表現はマイクロソフトがお得意で、DirectX(Direct3D)や.NETのアフィン変換でしか使われないので、特に必要の無い場合は覚えない方が無難です。

 

使える数学へ戻る

 



web拍手 by FC2

関連記事

スポンサーリンク

カテゴリー: 使える数学  タグ: , , , . Bookmark the permalink.

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です