回転行列、拡大縮小行列、平行移動行列

シェアする

  • このエントリーをはてなブックマークに追加
最近の記事
  • 10/21 【C#】寸法線の描画
  • 10/21 【C#】GraphicsPathの領域取得
  • 10/20 【C#】GraphicsPathの描画
  • 10/18 【C#】GraphicsPath
  • 10/17 【C#】Bitmap画像データの拡大縮小
  • 10/15 【C#】画像の座標系
  • 10/14 【C#】画像の上下左右反転、90,180,270度回転
  • 10/3 【C#】SplitContainerのPanel固定方法
  • 9/7 【Neural Network Console】学習データの出力方法
  • 9/3 Deep Learning向け学習画像撮り込みソフト公開
  • 9/1 【Neural Network Console】新規画像のDataset作成方法
  • 8/28 【Neural Network Console】GUI表示スケールの変更
  • 8/22 【Neural Network Console】CPU/GPU処理の設定切替
  • 8/21 【Neural Network Console】Learning Rate(学習率)の設定
  • 8/20 ソニーの無償AIソフト Neural Network Consoleの入手ダウンロード、インストール
  • 8/20 Deep Learning
  • 8/20
  • 8/19 古いバージョンのVisual Studio Community/Expressの入手ダウンロード
  • 8/19 CUDAの入手、ダウンロード、インストール方法
  • 8/17 【C#.NET】マイクロソフト仕様のアフィン変換
  • 8/5 【C#】ファイルを開くダイアログボックスの表示
  • 8/2 キャノンプリンターのCDトレイはどこ?!
  • 7/6 【参考書籍】画像処理・機械学習プログラミング OpenCV 3対応
  • 6/20 【Python,matplotlib】動くグラフをAnimationGifに保存する方法
  • 6/17 シグモイド関数の微分
  • 6/15 シグモイド関数
  • 6/13 合成関数の微分
  • 6/12 WordPressで数式エディタ風に数式を入力したい
  • 6/11 PythonをVisual Studioでインストールする方法
  • 6/9 【Python】OpenCVをAnacondaでインストール(Windows編)
  • 6/6 【Python】Anacondaで複数バージョンの環境切り替え
  • 6/6 画像センシング展2017に出展します。
  • 6/1 【Office365】Web版Outlookのフォントサイズ変更
  • 6/1 【Anaconda】モジュールのアップデートでエラー発生
  • 6/1 【Anaconda】コマンドリストの表示
  • 5/29 Windows10パソコン購入
  • 5/24 Anacondaのアンインストール
  • 5/24 【Jupyter Notebook】新規プログラムの作成
  • 5/23 【Python】開発環境の構築
  • 5/23 Pythonはじめました
  • 4/6 【Office365】Web版Outlookのスレッド表示を解除する方法
  • 4/5 【Excel】フーリエ解析(FFT)
  • 3/20 Canny edge detection
  • 3/20 【Excel2016】分析ツールの表示
  • 3/5 【Visual Studio】黒い背景色を白に変更する方法
  • 2/8 【Windows10】拡張モニタに表示されたウィンドウを元に戻す
  • 2/7 複素数の計算
  • 1/18 【Excel】棒グラフの横軸の目盛を0始まりにする
  • 1/16 【Excel】フーリエ変換
  • 1/6 【OpenCV】疑似カラー(カラーマップ)

  • 回転行列

    点(x, y)を原点まわりに反時計方向にθ度回転する行列は

    回転行列

    拡大縮小行列

    点(x, y)を原点に関してX軸方向に、Y軸方向にする行列は

    拡大縮小行列

    平行移動行列

    点(x, y)をX軸方向に、Y軸方向にだけ移動する行列は

    平行移動行列


    ただし、平行移動だけ行列の足し算になると、扱いにくい場合があるので3×3行列を用いて以下のように表す場合もあります。

    【回転行列】

    回転行列

    【拡大縮小行列】

    拡大縮小行列

    【平行移動行列】

    平行移動行列

    とすることで、すべての座標変換を行列の積で扱うことができます。

    この行列を同時座標行列と言います。


    参考まで...

    個人的には回転行列を覚えるのは苦手で、SinとCosが逆になっりマイナスのつける位置を間違ったりしていたのですが、次のように考えることで少しは覚えやすくなりました。

    下図のように

    点(1,0)をθ度回転すると(Cosθ、Sinθ)
    点(0,1)をθ度回転すると(-Sinθ、Cosθ)

    に移動することはすぐにわかります。

    回転行列

    このことを行列で表現すると
    点(1,0)が(Cosθ、Sinθ)になることから

    回転行列

    点(0,1)が(-Sinθ、Cosθ)になることから

    回転行列

    という事がわかります。
    これを合わせて表現すると

    回転行列

    となり、回転行列が求まります。
    この計算を何回か繰り返すと、そのうち覚えると思います。

    使える数学へ戻る

    コメント

    1. […] 5/29 回転行列、拡大縮小行列、平行移動行列 […]