最近の記事
  • 5/29 Windows10パソコン購入
  • 5/24 Anacondaのアンインストール
  • 5/24 【Jupyter Notebook】新規プログラムの作成
  • 5/23 【Python】開発環境の構築
  • 5/23 Pythonはじめました
  • 5/14 simplicity2-child
  • 4/6 【Office365】Web版Outlookのスレッド表示を解除する方法
  • 4/5 【Excel】フーリエ解析(FFT)
  • 3/20 Canny edge detection
  • 3/20 【Excel2016】分析ツールの表示
  • 3/5 【Visual Studio】黒い背景色を白に変更する方法
  • 2/8 【Windows10】拡張モニタに表示されたウィンドウを元に戻す
  • 2/7 複素数の計算
  • 1/18 【Excel】棒グラフの横軸の目盛を0始まりにする
  • 1/16 【Excel】フーリエ変換
  • 1/6 【OpenCV】疑似カラー(カラーマップ)
  • 11/8 【Visual Studio】検索結果のウィンドウ表示
  • 11/3 ニコン 一眼レフカメラ D5500レビュー
  • 10/26 カラーカメラはモノクロカメラを兼ねない
  • 9/6 (Free Soft)Animation GIF Builder
  • 8/30 【C#】タブの無いTabControlっぽいものを作る
  • 8/29 【OpenCvSharp】サンプルプログラムの公開
  • 8/28 【PowerPoint】部分的にカラーにする(セレクトカラー処理)
  • 8/27 【C#】引数の値渡し、参照渡し(ref, out)
  • 8/26 【Word/Excel】図形内に文字を挿入する
  • 8/25 【C#】NumericUpDownコントロール
  • 8/24 ニコン D3400 VS D5500 仕様比較
  • 8/22 【C#】MDIフォームにリサイズ可能なPanelを設置する
  • 8/20 【Visual Studio 2015】文字の色が変、かすむ
  • 8/20 【Visual Studio】行のコピー、切り取り、貼り付け
  • 8/20
  • 8/16
  • 7/7 標準偏差のよくある誤解
  • 6/8 FPGA処理によるカラー光切断法の公開(参考出品)
  • 5/28 OpenCV3.1+Visual Studio 2015+64bitOSで簡単にOpenCVを試す
  • 3/19 【ImageDataクラス】画像の輝度値のCSVファイル保存
  • 3/19 【ImageDataクラス】Regionプロパティ
  • 3/19 【ImageDataクラス】画像の輝度値(画素値)の取得/設定
  • 3/19 【ImageDataクラス】InterpolationModeプロパティ
  • 3/19 【ImageDataクラス】BorderTypeプロパティ
  • 3/18 【ImageDataクラス】サンプルプログラム
  • 3/17 ImageDataクラスライブラリの使用方法
  • 3/17 【C#】ImageDataクラスライブラリ公開
  • 3/17 ImageDataクラスライブラリ
  • 2/25 【OpenCV】黒板風処理
  • 12/17 【Excel】絶対参照、相対参照の切替
  • 12/16 【Windows10】モニタの文字のかすれを直す
  • 11/28 【C#】Chartを使ったヒストグラム表示
  • 11/28 【C#】Chartコントロールをとりあえず使ってみる
  • 11/25 【C#】Chartコントロールの主なプロパティ

  • ピボット選択を行ったGauss-Jordan法

    シェアする

    • このエントリーをはてなブックマークに追加

    前回紹介したGauss-Jordan法で解く逆行列の計算では例えば、

    Gauss-Jordan-with-pivot

    のように対角要素に0(ゼロ)が来ると、0で割れないため、対角要素を1にする事ができません。

    そこで、対角要素に0(ゼロ)が来ないように行を入れ替えてGauss-Jordan法を行います。
    さらに、ある値を割る場合、分母の値は絶対値が大きい方が割り算の誤差が小さくなります。
    (この割る要素の事をピボット(pivot)と言います。)

    この事を考慮し、Gauss-Jordan法で逆行列を求める例を示します。

    行列の右側に単位行列を追加します。

    Gauss-Jordan-with-pivot

    1行1列目の要素の絶対値が最大となるように1行目3行目を入れ替えます。

    Gauss-Jordan-with-pivot

    1行1列目の要素が1となるように1行目4で割ります。

    Gauss-Jordan-with-pivot

    1列目の要素が(1 0 0)となるように

    [2行目] = [2行目]ー[1行目]×3
    [3行目] = [3行目]ー[1行目]×2

    を計算します。

    Gauss-Jordan-with-pivot

    ここで2行2列目の要素の絶対値はすでに最大なので、2行2列目の要素が1となるように
    2行目-9/4で割ります。

    Gauss-Jordan-with-pivot

    2列目の要素が(0 1 0)となるように

    [1行目] = [1行目]-[2行目]×3/4
    [3行目] = [3行目][2行目]×1/2

    を計算します。

    Gauss-Jordan-with-pivot

    ここで、3行3列目の要素はすでに1なので、3列目の要素が(0 0 1)となるように

    [1行目] = [1行目]-[3行目]×2/3
    [2行目] = [3行目]+[3行目]×2/9

    を計算します。

    Gauss-Jordan-with-pivot

    これで、左側が単位行列となり、右側に出来た行列が求める逆行列となります。

    このようにピボット選択を考慮する事で、対角要素が0であっても逆行列を解くことが可能となる場合があります。

    使える数学へ戻る

    シェアする

    • このエントリーをはてなブックマークに追加

    フォローする

    関連記事

    スポンサーリンク

    コメント

    1. […] 5/12 ピボット選択を行ったGauss-Jordan法 […]

    2. […] 5/12 ピボット選択を行ったGauss-Jordan法 […]